
Python and Machine Learning: How to use algorithms to
create yara rules with a malware zoo for hunting
PassTheSalt 2018

Who’s who

● Sebastien Larinier (ceo of SCTIF)
● @sebdraven, slarinier@gmail.com
● DFIR, malware analysis
● Honeynet project chapter France and co organizer of Botconf
● Francomisp, Yeti and some open source stuffs here:

https://github.com/sebdraven

https://github.com/sebdraven

Topics

● Malwares PE format
● Clustering
● Yara and Hunting

PE format: definitions and
generalities

Pe format

Mz-Dos header

Dos segment
PE Header

Tables of sections
Section 1

Section 2

Section N

Pe format

typedef struct _IMAGE_DOS_HEADER
{
 WORD e_magic; //magic number
 WORD e_cblp; //Bytes on last page of file
 WORD e_cp; //Pages on file
 WORD e_crlc; //relocations
 WORD e_cparhdr; // Size of header in paragraphs
 WORD e_minalloc; // Min extra paragraphs needed
 WORD e_maxalloc; // Max extra paragraphs needed
 WORD e_ss; // Max extra paragraphs needed
 WORD e_sp; // Initial SP value
 WORD e_csum; // Checksum
 WORD e_ip; // Initial IP value
 WORD e_cs; // Initial (relative) CS value
 WORD e_lfarlc; // File add of relocation table
 WORD e_ovno; // Overlay number
 WORD e_res[4]; // Reserved words
 WORD e_oemid; // OEM identifier
 WORD e_oeminfo; // OEM information
 WORD e_res2[10]; // Reserved words
 LONG e_lfanew; // File addr of new exe header
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

Pe Format

● PE header

typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER OptionalHeader;
} IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;

● PE\0\0

Pe format

● PE header

typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;
 WORD NumberOfSections;
 DWORD TimeDateStamp;
 DWORD PointerToSymbolTable;
 DWORD NumberOfSymbols;
 WORD SizeOfOptionalHeader;
 WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

Pe format

● PE header

Typedef struct _IMAGE_OPTIONAL_HEADER {
 WORD Magic;
 BYTE MajorLinkerVersion;
 BYTE MinorLinkerVersion;
 DWORD SizeOfCode;
 DWORD SizeOfInitializedData;
 DWORD SizeOfUninitializedData;
 DWORD AddressOfEntryPoint;
 DWORD BaseOfCode;
 DWORD BaseOfData;
 DWORD ImageBase;
 DWORD SectionAlignment;
 DWORD FileAlignment;

Pe format

WORD MajorOperatingSystemVersion;
 WORD MinorOperatingSystemVersion;
 WORD MajorImageVersion;
 WORD MinorImageVersion;
 WORD MajorSubsystemVersion;
 WORD MinorSubsystemVersion;
 DWORD Win32VersionValue;
 DWORD SizeOfImage;
 DWORD SizeOfHeaders;
 DWORD CheckSum;
 WORD Subsystem;
 WORD DllCharacteristics;

Pe format

DWORD SizeOfStackReserve;
 DWORD SizeOfStackCommit;
 DWORD SizeOfHeapReserve;
 DWORD SizeOfHeapCommit;
 DWORD LoaderFlags;
 DWORD NumberOfRvaAndSizes;
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

Pe Format

● Pe Header

typedef struct _IMAGE_DATA_DIRECTORY {

DWORD VirtualAddress;

DWORD Size;

} IMAGE_DATA_DIRECTORY,*PIMAGE_DATA_DIRECTORY;

Pe format

Pe format

● Table of sections

typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 DWORD PhysicalAddress;
 DWORD VirtualSize;
 } Misc;
 DWORD VirtualAddress;
 DWORD SizeOfRawData;
 DWORD PointerToRawData;
 DWORD PointerToRelocations;
 DWORD PointerToLinenumbers;
 WORD NumberOfRelocations;
 WORD NumberOfLinenumbers;
 DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

Pe Format

● Imports table
○ Functions used by the binary from external lib

● Exports table
○ Functions shared by the binary (basically DLLs)

● Ressources Tables
○ icons, strings, langage using

Pe Format

Few words about machine
learning algorithms

Clustering vs Classification

● Clustering: Automatic grouping of similar objects into sets.
● Classification: Identifying the category an object belongs to

So clustering is applied on dataset unlabeled and classification on dataset
labeled

Algorithms

So usually, for classification (on labeled dataset) we use supervised
algorithms.

And for clustering (on unlabeled dataset) we use unsupervised algorithms.

Vector of features

When using machine learning algorithms, the inputs are vectors of features. A
vector of features describes the characteristics of an object.

Differents features of a malware can be:

● The size
● The imports table
● The number of sections
● The entropy of the file
● The entropy by section
● ...

Similarities and distance

Two objects with a small distance between them are similar.

For this presentation

Here we mix the previous concepts: we use unsupervised algorithms on a
labeled dataset.

Because we want to have clusters with similar malwares to generate yara rules
on each cluster.

Malwares and Clustering

Why clustering malware ?

● Create signatures to catch a complete family
● Minimize false positives
● Hunting campaigns

Fuzzy hashing

● Fuzzy hashing: ssdeep

The idea is to create a signature for each file you want to compare and then,
make a comparison based on edition distance between those signatures.

Examples on PlugX

5b183e99ed532cb143c55ded6a46f5b0545c575f6b54b25afbb04b0bbf40170c

302b1196dbe7d90effe72de832e0696016ea69a7a6915217081f013c1db7bc37

Fuzzy hashing

Ssdeep format:

chunksize:chunk:double_chunk
6144:z4lRkAehaKuqT+FXErGKhVPBD3A29ELNLnqpC+:zkWAehJuqTvbV5OLIpD

6144:z4lRkAehaKuqT+FXErGKhVPBD3A2LLOfY2axu/oI4R6ZDIB:zkWAehJuqTv
bV5D2dsRHB

75 % of matching between the two signatures

Limitations

Signature A with chunk size A’ and Signature B witch chunk size B’

If B’ != A’:

Then

 match(A,B) is 0

So if the code of two malwares is the same and one has a section with garbage
data, the result of the matching is 0

PeHash

The concept of PeHash is to use the characteristics of PE format to make a
clustering.

The clustering is possible because the hash depends on an approximation of
Kolmogorov complexity.

But it’s impossible to compute a distance between two files. It’s equal or not.

https://www.usenix.org/legacyurl/pehash-novel-approach-fast-malware-clustering-0

ImpHash and ImpFuzzy

The idea of this clustering is that if two malwares have the same import table
or near, they are from the same family because they use the same functions
(network,system, I/O…)

Imphash = md5(Import Table of PE)

ImpFuzzy = ssdeep(Import Table of PE)

The major disadvantage is if two malwares have the same symbols but not in
the same order, their imphash are different and their Impfuzzy match at 40 %

Polichombr, Machoc and r2graphity

Each technic disass the binary, generate the graph flow and compare them.

Polochombr and Machoc process a fuzzy hash on the graph flow instructions.

R2graphity is used to print the differents graphs.

The major disadvantage is the scalability. Indeed, comparing the graph flow
signatures together has a complexity of n2 (n = number of signatures)

Our Strategy

For the scalability we decided to use two algorithms:

● Dbscan
● K-means

And the following dataset :

https://github.com/ytisf/theZoo

We decided to check those unsupervised algorithms on a dataset labeled to
verify some hypothesis

https://github.com/ytisf/theZoo

Our strategy

● Construct the best vector of features on this dataset
● Generate yara rule by cluster
● Generalize the system

Algorithms Dbscan - Kmeans

K Means Algorithm

 The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance,
minimizing a criterion known as the inertia or within-cluster sum-of-squares. This algorithm requires
the number of clusters to be specified. It scales well to large number of samples and has been used
across a large range of application areas in many different fields.
The k-means algorithm divides a set of N samples X into K disjoint clusters C, each described by the
mean of the samples in the cluster. The means are commonly called the cluster “centroids”; note
that they are not, in general, points from X, although they live in the same space. The K-means
algorithm aims to choose centroids that minimise the inertia, or within-cluster sum of squared
criterion:

K Means Algorithm

First step:

● We choose the number of cluster
● We choose the initial centroids in three ways:

○ With k-mean ++ init, the algorithm chooses k centroids in processing an index called
inertia in a loop and choose the better value

○ Randomly, the algorithm chooses k centroids in the matrix
○ Nparray, the user chooses the k centroids

K Means Algorithm

Second step:

● The algorithm calculates distance between k- centroids and all vectors in
the matrix and constructs k clusters minimizing inertia with k centroids
and the nearest vectors with this k centroid

K-Means Example

DBScan Algorithm

The DBSCAN algorithm views clusters as areas of high density separated by areas of low
density. Due to this rather generic view, clusters found by DBSCAN can be any shape, as
opposed to k-means which assumes that clusters are convex shaped. The central
component to the DBSCAN is the concept of core samples, which are samples that are in
areas of high density. A cluster is therefore a set of core samples, each close to each
other (measured by some distance measure) and a set of non-core samples that are
close to a core sample (but are not themselves core samples). There are two parameters
to the algorithm, min_samples and eps, which define formally what we mean when we
say dense. Higher min_samples or lower eps indicate higher density necessary to form a
cluster.

Dbscan: Example

PE and Featuring

How to transform a PE into an array to make
a vector of features

First step is to extract data in json files.

Vector of features is an array in numpy library

Malwares and featuring

Interesting informations for a malware are:

1. Sections: name,size, entropy, characteristics
2. Imports: number of modules, number of symbols, functionalities
3. Exports: number of modules, number of symbols, functionalities
4. Size of file

First Vector of features

So we make a first feature vector:

[size of file, number of sections, median of entropy, number of imports, number
of exports]

Results with the first vector with K-means

The first results are interesting but are not totally efficient.

If you check the norm of vectors, the size of file is the feature
which erase all other values

http://localhost:8888/notebooks/Kmeans%20and%20DBScans%20algorithms.ipynb

Results with the first vector with DBScan

It’s worse than K-Means because the vector is
depending on the size of file and this make the density
bad. We have to normalize the vector.

The key of success

Here, the vector of feature depends on the size of file. If v is a vector of feature,

norm(v) ~ size of file

So, we normalize the vector of features.

Second vector of features

Now we normalize the vector of features:

[size of file / max(size of all files), number of sections/ max(number of
sections of all files), median of entropy /max(median of entropy of all files),
number of imports / max(number of imports of all files), number of exports /
max(number of exports of all files)]

Results with second vectors with K-Means

The classification is better than the first one, whereas we just normalized the
values.

Now we add check with DBscan algorithm with the first and second vectors

Results with the second vector with DBScan

We have a good classification by families and by
versions of families

Yara rules Generation

Yaragenerator

● https://github.com/Xen0ph0n/YaraGenerator
● Generate automatically yara rules based on an intersection of strings

https://github.com/Xen0ph0n/YaraGenerator

Using ours results of clustering malware

On the EquationGroup Cluster we have a rule matching this family.

But if we try with the Regin family, it doesn’t work because the tool doesn’t find
an intersection based on strings.

Results

On VT hunting, we have found 39 new Equation_Group malwares with this yara
rule during the six month later.

We don’t have false positive

Conclusions

We have seen machine learning is not magic, a work of
featuring must be done including the of the dataset.

Here, our dataset is very heterogeneous with a big cluster of
EquationGroup, and others clusters with few malwares

The machine learning is useful to make a first filter to clusterize
a big dataset because the algorithms have been thought to be
scalable contrary to algorithms which compare signatures.
(ssdeep,impfuzzy,machoc…)

