
Internals of Landlock: a new kind of Linux
Security Module leveraging eBPF

Mickaël Salaün

ANSSI

July 4, 2018

1 / 24



Protect users from your application

Threat

1. bug exploitation of your code

2. bug or backdoor in a third party component

⇒ your application is used against your will

Defenses

I follow secure development practices

I use an hardened toolchain

I use OS security features (e.g. sandboxes)

The Landlock features

I help define and embed security policy in your code

I enforce an access control on your application

2 / 24



Protect users from your application

Threat

1. bug exploitation of your code

2. bug or backdoor in a third party component

⇒ your application is used against your will

Defenses

I follow secure development practices

I use an hardened toolchain

I use OS security features (e.g. sandboxes)

The Landlock features

I help define and embed security policy in your code

I enforce an access control on your application

2 / 24



Protect users from your application

Threat

1. bug exploitation of your code

2. bug or backdoor in a third party component

⇒ your application is used against your will

Defenses

I follow secure development practices

I use an hardened toolchain

I use OS security features (e.g. sandboxes)

The Landlock features

I help define and embed security policy in your code

I enforce an access control on your application

2 / 24



Demonstration #1

Read-only accesses...

I /public
I /etc
I /usr
I . . .

...and read-write accesses

I /tmp
I . . .

3 / 24



What about the other Linux security features?

Fine-grained control Embedded policy Unprivileged use

SELinux. . . X

seccomp-bpf X X

namespaces X ∼

Landlock X X X1

Tailored access control to match your needs: programmatic access control

1Disabled on purpose for the initial upstream inclusion, but planned to be enabled
after a test period.

4 / 24



What about the other Linux security features?

Fine-grained control Embedded policy Unprivileged use

SELinux. . . X

seccomp-bpf X X

namespaces X ∼

Landlock X X X1

Tailored access control to match your needs: programmatic access control

1Disabled on purpose for the initial upstream inclusion, but planned to be enabled
after a test period.

4 / 24



What about the other Linux security features?

Fine-grained control Embedded policy Unprivileged use

SELinux. . . X

seccomp-bpf X X

namespaces X ∼

Landlock X X X1

Tailored access control to match your needs: programmatic access control

1Disabled on purpose for the initial upstream inclusion, but planned to be enabled
after a test period.

4 / 24



Landlock overview

5 / 24



extended Berkeley Packet Filter

In-kernel virtual machine

I safely execute code in the kernel at run time

I widely used in the kernel: network filtering (XDP), seccomp-bpf,
tracing. . .

I can call dedicated functions

I can exchange data through maps between eBPF programs and
user-space

Static program verification at load time

I memory access checks

I register typing and tainting

I pointer leak restrictions

I execution flow restrictions

6 / 24



extended Berkeley Packet Filter

In-kernel virtual machine

I safely execute code in the kernel at run time

I widely used in the kernel: network filtering (XDP), seccomp-bpf,
tracing. . .

I can call dedicated functions

I can exchange data through maps between eBPF programs and
user-space

Static program verification at load time

I memory access checks

I register typing and tainting

I pointer leak restrictions

I execution flow restrictions

6 / 24



The Linux Security Modules framework (LSM)

LSM framework

I allow or deny user-space actions on kernel objects

I policy decision and enforcement points

I kernel API: support various security models

I 200+ hooks: inode permission, inode unlink, file ioctl. . .

Landlock

I hook: set of actions on a specific kernel object (e.g. walk a file path)

I program: access-control checks stacked on a hook

I triggers: actions mask for which a program is run (e.g. read, write,
execute, remove, IOCTL. . . )

7 / 24



The Linux Security Modules framework (LSM)

LSM framework

I allow or deny user-space actions on kernel objects

I policy decision and enforcement points

I kernel API: support various security models

I 200+ hooks: inode permission, inode unlink, file ioctl. . .

Landlock

I hook: set of actions on a specific kernel object (e.g. walk a file path)

I program: access-control checks stacked on a hook

I triggers: actions mask for which a program is run (e.g. read, write,
execute, remove, IOCTL. . . )

7 / 24



Safely handle malicious policies

I Landlock should be usable by everyone

I we can’t tell if a process will be malicious

⇒ trust issue

8 / 24



Unprivileged access control

Sought properties

I multiple applications, need independant but composable security
policies

I tamper proof: prevent bypass through other processes (i.e. via ptrace)

Harmlessness

I safe approach: follow the least privilege principle (i.e. no SUID)

I limit the kernel attack surface:
I minimal kernel code (security/landlock/*: ∼2000 SLOC)
I eBPF static analysis
I move complexity from the kernel to eBPF programs

9 / 24



Unprivileged access control

Sought properties

I multiple applications, need independant but composable security
policies

I tamper proof: prevent bypass through other processes (i.e. via ptrace)

Harmlessness

I safe approach: follow the least privilege principle (i.e. no SUID)

I limit the kernel attack surface:
I minimal kernel code (security/landlock/*: ∼2000 SLOC)
I eBPF static analysis
I move complexity from the kernel to eBPF programs

9 / 24



Unprivileged access control

Protect access to process ressources

I the rule creator must be allowed to ptrace the sandboxed process

Protect access to kernel ressources

I prevent information leak: an eBPF program shall not have more
access rights than the process which loaded it

I still, access control need some knowledge to take decision (e.g. file
path check)

I only interpreted on viewable objects and after other access controls

10 / 24



Unprivileged access control

Protect access to process ressources

I the rule creator must be allowed to ptrace the sandboxed process

Protect access to kernel ressources

I prevent information leak: an eBPF program shall not have more
access rights than the process which loaded it

I still, access control need some knowledge to take decision (e.g. file
path check)

I only interpreted on viewable objects and after other access controls

10 / 24



Identifying a file path

I path evaluation based on walking through inodes

I multiple Landlock program types

11 / 24



eBPF inode map

Goal
restrict access to a subset of the filesystem

Challenges

I efficient

I updatable from user-space

I unprivileged use:
I no xattr
I no absolute path

Solution

I new eBPF map type to identify an inode object

I use inode as key and associate it with a 64-bits arbitrary value

12 / 24



eBPF inode map

Goal
restrict access to a subset of the filesystem

Challenges

I efficient

I updatable from user-space

I unprivileged use:
I no xattr
I no absolute path

Solution

I new eBPF map type to identify an inode object

I use inode as key and associate it with a 64-bits arbitrary value

12 / 24



eBPF inode map

Goal
restrict access to a subset of the filesystem

Challenges

I efficient

I updatable from user-space

I unprivileged use:
I no xattr
I no absolute path

Solution

I new eBPF map type to identify an inode object

I use inode as key and associate it with a 64-bits arbitrary value

12 / 24



Demonstration #2

Update access rights on the fly

13 / 24



Chained programs and session

Landlock programs and their triggers (example)

14 / 24



Chained programs and session

Landlock programs and their triggers (example)

14 / 24



Chained programs and session

Landlock programs and their triggers (example)

14 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



Walking through a file path

Example: open /public/web/index.html

15 / 24



From the rule to the kernel

I writing a Landlock rule

I loading it in the kernel

I enforcing it on a set of processes

16 / 24



Life cycle of a Landlock program

17 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };

18 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }

19 / 24



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

20 / 24



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

20 / 24



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

20 / 24



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

20 / 24



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

20 / 24



Loading a rule in the kernel

20 / 24



Applying a Landlock program to a process

1 seccomp(SECCOMP_PREPEND_LANDLOCK_PROG, 0, &prog_fd);

21 / 24



Applying a Landlock program to a process

21 / 24



Applying a Landlock program to a process

21 / 24



Applying a Landlock program to a process

21 / 24



Kernel execution flow

Example: the inode create hook

1. check if landlocked(current)
2. call decide fs pick(LANDLOCK TRIGGER FS PICK CREATE, dir)
3. for all fs pick programs enforced on the current process

3.1 update the program’s context
3.2 interpret the program
3.3 continue until one denies the access

22 / 24



Landlock: wrap-up

User-space hardening

I programmatic and embeddable access control

I designed for unprivileged use

I apply tailored access controls per process

I make it evolve over time (map)

Current status

I standalone patches merged in net/bpf, security and kselftest trees

I security/landlock/*: ∼2000 SLOC

I ongoing patch series: LKML, @l0kod
I full security module stacking is comming!

23 / 24

https://lwn.net/Articles/731478/
https://twitter.com/l0kod


Landlock: wrap-up

User-space hardening

I programmatic and embeddable access control

I designed for unprivileged use

I apply tailored access controls per process

I make it evolve over time (map)

Current status

I standalone patches merged in net/bpf, security and kselftest trees

I security/landlock/*: ∼2000 SLOC

I ongoing patch series: LKML, @l0kod
I full security module stacking is comming!

23 / 24

https://lwn.net/Articles/731478/
https://twitter.com/l0kod


https://landlock.io

24 / 24

https://landlock.io


Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Enforcement through cgroups

Why?
user/admin security policy (e.g. container): manage groups of processes

Challenges

I complementary to the process hierarchy rules (via seccomp(2))

I processes moving in or out of a cgroup

I unprivileged use with cgroups delegation (e.g. user session)



Enforcement through cgroups

Why?
user/admin security policy (e.g. container): manage groups of processes

Challenges

I complementary to the process hierarchy rules (via seccomp(2))

I processes moving in or out of a cgroup

I unprivileged use with cgroups delegation (e.g. user session)



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .


	Introduction
	Protect users from your application
	Demonstration #1
	What about the other Linux security features?
	Landlock overview
	extended Berkeley Packet Filter
	The Linux Security Modules framework (LSM)

	Safely handle malicious policies
	Unprivileged access control
	Unprivileged access control

	Identifying a file path
	eBPF inode map
	Demonstration #2
	Chained programs and session
	Walking through a file path

	From the rule to the kernel
	Life cycle of a Landlock program
	Landlock program's metadata
	Landlock program code
	Loading a rule in the kernel
	Applying a Landlock program to a process
	Kernel execution flow

	Conclusion
	Landlock: wrap-up

	Appendix
	Misc
	Rule enforcement on process hierarchy
	Enforcement through cgroups
	Future Landlock program types



